Linear elasticity obtained from finite elasticity by Γ-convergence under weak coerciveness conditions
نویسندگان
چکیده
منابع مشابه
Artificial conditions for the linear elasticity equations
In this paper, we consider the equations of linear elasticity in an exterior domain. We exhibit artificial boundary conditions on a circle, which lead to a non-coercive second order boundary value problem. In the particular case of an axisymmetric geometry, explicit computations can be performed in Fourier series proving the wellposedness except for a countable set of parameters. A perturbation...
متن کاملFinite Element Methods for Linear Elasticity
Conditions for Stable Approximation Schemes Basic idea: Mimic structure of continuous problem. To establish stability of continuous problem, only used last two spaces in top sequence and last three spaces in bottom sequence. Λn−1(K) dn−1 −−−→ Λn(K)→ 0 ↗ Sn−2 ↗ Sn−1 Λn−2(V) dn−2 −−−→ Λn−1(V) dn−1 −−−→ Λn(V)→ 0. Thus, look for five finite dimensional spaces connected by a similar structure, i.e.,...
متن کاملΓ-convergence approximation of fracture and cavitation in nonlinear elasticity
Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The exp...
متن کاملAsymptotic Models for Curved Rods Derived from Nonlinear Elasticity by Γ-convergence
We study the problem of the rigorous derivation of one-dimensional models for a thin curved beam starting from three-dimensional nonlinear elasticity. We describe the limiting models obtained for different scalings of the energy. In particular, we prove that the limit functional corresponding to higher scalings coincides with the one derived by dimension reduction starting from linearized elast...
متن کاملConvergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity
We show convergence of a cell-centered finite volume discretization for linear elasticity. The discretization, termed the MPSA method, was recently proposed in the context of geological applications, where cell-centered variables are often preferred. Our analysis utilizes a hybrid variational formulation, which has previously been used to analyze finite volume discretizations for the scalar dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2012
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2012.04.001